DNA binding and cleavage by the HNH homing endonuclease I-HmuI.

نویسندگان

  • Betty W Shen
  • Markus Landthaler
  • David A Shub
  • Barry L Stoddard
چکیده

The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily.

The restriction endonuclease (REase) R.KpnI is an orthodox Type IIP enzyme, which binds to DNA in the absence of metal ions and cleaves the DNA sequence 5'-GGTAC--C-3' in the presence of Mg2+ as shown generating 3' four base overhangs. Bioinformatics analysis reveals that R.KpnI contains a betabetaalpha-Me-finger fold, which is characteristic of many HNH-superfamily endonucleases, including hom...

متن کامل

Homing endonuclease structure and function.

Homing endonucleases are encoded by open reading frames that are embedded within group I, group II and archael introns, as well as inteins (intervening sequences that are spliced and excised post-translationally). These enzymes initiate transfer of those elements (and themselves) by generating strand breaks in cognate alleles that lack the intervening sequence, as well as in additional ectopic ...

متن کامل

Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort.

We have recently described three group I introns inserted into a single gene, orf142, of the staphylococcal bacteriophage Twort and suggested the presence of at least two additional self-splicing introns in this phage genome. Here we report that two previously uncharacterized introns, 429 and 1087 nt in length, interrupt the Twort gene coding for the large subunit of ribonucleotide reductase (n...

متن کامل

Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease.

Many group I introns encode endonucleases that promote intron homing by initiating a double-stranded break-mediated homologous recombination event. In this work we describe intron homing in Bacillus subtilis phages SPO1 and SP82. The introns encode the DNA endonucleases I-HmuI and I-HmuII, respectively, which belong to the H-N-H endonuclease family and possess nicking activity in vitro. Coinfec...

متن کامل

A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9

The Cas9 endonuclease is widely used for genome engineering applications by programming its single-guide RNA, and ongoing work is aimed at improving the accuracy and efficiency of DNA targeting. DNA cleavage of Cas9 is controlled by the conformational state of the HNH nuclease domain, but the mechanism that governs HNH activation at on-target DNA while reducing cleavage activity at off-target s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 342 1  شماره 

صفحات  -

تاریخ انتشار 2004